研究

仿生制造的仿生设计揭示了更强的3D打印

研究由丹麦独立研究技术和生产科学委员会部分资助,从牡蛎和鲍鱼壳中汲取灵感,以获取更强的材料。基于算法的设计和多边3D打印的组合用于发现虹彩的珍珠母“ca. 3000 times greater than that of its main mineral building block.”

鲍鱼(Haliotis)和牡蛎(Pinctada)壳中层的重叠结构。图片通过SimonFrølich,James C. Weaver,Mason N. Dean和Henrik Birkedal
鲍鱼(Haliotis)和牡蛎(Pinctada)贝壳中珍珠层母亲的重叠结构。图片通过SimonFrølich,James C. Weaver,Mason N. Dean和Henrik Birkedal

Made of bricks and mortar

在本文中,研究人员创建了一个四部分的框架,以更好地理解珍珠之母(也称为Nacre)的堆叠的“实体”结构。该框架是一个循环过程,每个阶段都会告知下一个与自然匹配的材料的持续开发。

设计周期

在第一步中,拍摄了SEM图像的壳的显微镜结构。这个阶段揭示了细胞的内部几何形状,以及如何使用刚性矿物“砖”和柔软的弹性“砂浆”组合形成壳。

This information is then used to create an algorithm for parametric modeling of the structure.

链接3D模型的部分

Parametric design creates a relationship between all the elements of a 3D model to better understand how the object works. In a parametric model, the internal geometry of an object makes sense它是3D打印的。作者解释了如下,

This pipeline, linking form and function, facilitates highly efficient and high-throughput experimental screening of a very large design parameter space, allowing exploration of the structural design features that play vital roles in a material’s performance.

A parametric model is 3D printed by the researchers using a Stratasys multimaterial Connex500 3D printer. VeroWhite or VeroClear resin is used to make the the bricks, and transparent TangoPlus for the mortar.

然后对3D打印零件进行机械强度测试。机器生成的力与牡蛎和鲍鱼的自然威胁相匹配,包括螳螂虾的打击。

Mantis shrimp cracking a giant crab’s claw. Clip viaMantisman™on YouTube

Then the process is repeated. SEM images of the 3D printed material are studied to understand the success and accuracy of the object’s internal structure.

根据讨论,

…所得的有形模型是直接模拟物,或者是所研究的生物结构的高度简化结构类似物。此处介绍的参数工作流程的强度是,它允许灵活且高通量创建真正的3D模型,并且可以应用于具有模型和3D打印功能的任何系统。

模仿生物材料的自然强度或其他特性的能力对于制造的未来有希望。

科学模仿自然

就材料而言,自然已经正确了。设计师经常创建以生物启发的结构(例如3D printed bridge in Madrid米兰的骨头Trabeculae Pavilion.加拿大麦吉尔大学的材料研究还使用了3D打印测试和模仿乌龟壳的拼图样结构的强度.

Uncovering Nature’s Design Strategies through Parametric Modeling, Multi-Material 3D Printing, and Mechanical Testingpublished in the research journal Advanced Engineering Materials.

The research is co-authored by Henrik Birkedal and Simon Frølich of Aarhus University, Denmark; James C. Weaver from the Wyss Institute for Biologically Inspired Engineering, Harvard University, MA; and Mason N. Dean from the Max Planck Institute of Colloids and Interfaces in Germany.

为了了解3D打印的材料研究和仿生制造申请的最新应用程序,sign up to the 3D Printing Industry newsletterfollow our active social media channels.

另外,为什么不让我们在下面的评论部分中知道您对这项研究的想法。

特色图片显示了牡蛎壳的集合。Paul Asman和Jill Lenoble的照片,Pauljill,Flickr