Research

研究人员转向微流体技术,希望3D印刷人机器官

Researchers from the史蒂文斯技术学院在新泽西州,正在使用计算建模技术来推进基于微流体的3D生物打印,他们希望有一天能够制造整个人体器官。

当今的许多最先进的生物打印机都是基于挤出过程,因此,喷嘴沉积生物互联,以创建约200微米的组织结构。

基于微流体的生物生产物将通过精确操纵液体通过微小的通道来运行,并且可以打印出仅测量数十微米的结构。这更类似于单个细胞量表,据报道,如果我们将3D打印的器官成为现实,则是需要的。

史蒂文斯(Stevens)的工程与科学学院副教授罗伯特·张(Robert Chang)在领导着这项工作的领导下解释说:“规模非常重要,因为它影响了器官的生物学。我们正在按照人类细胞的规模进行操作,这使我们可以打印模仿我们试图复制的生物学特征的结构。”

使用Cellink 3D Bioprointer的科学家。
BICO的BIO X 3D BioProinter,一种基于挤出的系统。通过BICO照片。

Towards human organ transplants

器官移植可能是患有严重疾病的人的生命挽救,但总是缺乏合适的捐助者。在美国,目前有超过100,000名患者在移植等候名单上,每天约有17人在等待捐助者时死亡。

3D bioprinting technology has long been heralded as a potential solution to the problem, but a lack of technological development means we aren’t quite there yet. As it stands, bioprinters are adept at fabricating simple single-celled tissues and structures, but Chang and his team believe microfluidics may be the key to engineering virtually any type of complex tissue. This includes entire vital organs and even skin printed directly onto open wounds.

Chang说:“创建新的器官以订购和挽救生命而无需为人类捐助者而言,这将是医疗保健的巨大好处。”“但是,达到这个目标是棘手的,因为使用生物墨水的印刷器官(装有培养细胞的水凝胶)需要对当前3D打印机根本无法实现的印刷微纤维的几何形状和大小的良好控制。”

As well as allowing for much smaller scales, a microfluidics-based process will also be compatible with multiple bioinks. Each of these bioinks might contain precursors for different cell types, so users would be able to combine them within a single printed tissue structure. This is crucial for complex organs such as livers and kidneys, as they rely on a wide variety of cell types working in tandem to operate.

计算建模3D生物打印

将3D生物打印过程缩短至仅数十微米并不容易,并且需要研究各种参数,例如流速,通道结构和流体动力学如何影响印刷组织结构的性质。为此,Chang和他的团队开发了微流体打印头的计算模型。该模型允许他们微调参数并预测它们如何影响过程,而无需进行乏味的物理实验。

Ahmadreza Zaeri, first author of the study, stated, “Our computational model advances a formulaic extraction that can be used to predict the various geometrical parameters of the fabricated structures extruded from the microfluidic channels.”

通过模拟现实世界实验的结果,该团队现在正在更好地了解如何打印各种器官结构。结果将用于开发多细胞类型的生物学。Chang还致力于调整微流体生物打印以将皮肤直接捏造到伤口上。

这项工作的更多详细信息可以在标题的论文中找到‘Numerical analysis on the effects of microfluidic-based bioprinting parameters on the microfiber geometrical outcomes’.

Schematic design of the modelled microfluidic printhead and the numerical modelled parameters, Image via Stevens IoT.
Schematic design of the modelled microfluidic printhead and the numerical modelled parameters, Image via Stevens IoT.

当然,这不是微流体技术在增材制造业中成为头条新闻。今年早些时候,阶段Inc是一家位于北卡罗来纳州的医疗3D打印初创公司,与Virginia Techadvance the field of microfluidics 3D printing。Together, Phase and Virginia Tech will use the former’s proprietary LE3D printing technology to develop novel microfluidic devices that will help researchers formulate new and improved medical treatments for conditions such as brain cancer.

在其他地方,来自University of Bristol以前已经开发了一种小说,低成本和open-source 3D printing process for producing microfluidic devices。研究人员的过程仅需要简单的家用设备和标准台式3D打印机,并且在免费使用软件中开发,可以降低制造微流体的成本和复杂性,使该领域更容易访问。

Subscribe to the3D打印行业通讯for the latest news in additive manufacturing. You can also stay connected by following us onTwitter, liking us onFacebook, and tuning into the3D打印行业YouTube频道

Looking for a career in additive manufacturing? Visit3D打印作业在行业中选择一系列角色。

特色图显示了BICO的BIO X 3D BioProinter,这是一种基于挤出的系统。通过BICO照片。