Research

Strathclyde大学receives £500K to develop novel miniaturized acoustic systems with 3D printing

一个新颖的项目正在Strathclyde大学has received just under £500,000 to develop miniaturized acoustic systems by means of additive manufacturing.

该大学的修饰者 - 微型声学谐振系统项目,与University of Glasgow,正在探索通过3D打印形成由超材料形成的声音谐振器的方法,而不是依靠电子系统。

“We are aiming to eventually develop cutting edge systems for personal audio that could constitute the science of audio of acoustic systems for the next generation of technologies in wearable consumer projects,” said Project Lead Dr. Joe Jackson, from the University of Strathclyde’s department of Electronic and Electrical Engineering.

声学3D打印

过去,添加剂制造已被用来开发对象增强声音和验证属性。去年,Fraunhofer UmsichtFraunhofer IBP3D printedfungus-based sound-proofing deviceswhich could be used to fabricate a new line of sustainable acoustic prototypes capable of outperforming conventional products.

在其他地方,3D打印已用于制造无定形的改善吉他的声学, and to fulfill sophisticated水下声音声纳应用。Regarding additive manufacturing’s application for sound-proofing purposes,TU DelftMaterialise以前曾共同开发3D打印的声音声音面板这可以改善音乐厅和体育馆内的声学。

特色图片显示了Tu代尔夫特团队之一,其中包含其3D印刷原型面板之一。通过Tu Delft的照片。
One of the TU Delft team holding one of their 3D printed prototype panels. Photo via TU Delft.

微型声学系统

这项三年项目由Engineering & Physical Sciences Research Council手臂UK Research & Innovation,并将专注于创建具有出色声学性能的超材料,该材料可以形成具有微观功能的新声学系统。

该项目的症结是通过简单,易于构建的系统实现声学功能,而不是依靠电子设备,通过用3D打印来制作声音优化的超材料,而不是依靠电子设备。过去,由于与语音和声音噪声相关的长波长,因此,通过可穿戴的个人音频和医疗设备等微型声学系统(例如听证会)充满挑战和昂贵。

杰克逊说:“大多数研究外部助听器和人工耳蜗的声音检测部分 - 一种电力刺激耳蜗神经的电子设备 - 与电子设备有关,例如对信号和数字信号处理的分析。”。“但这是昂贵的,需要电池寿命,而设备越先进,他们可能会变得越不切实际,例如用户每隔几个小时就会充电。”

这项修饰者项目正在寻求通过调查声音如何与由超材料形成的声音共振器一起工作来解决这一挑战。

可以在项目中利用的超材料以创造传统材料无法获得的声学特性的方式构建,并且可以提供极为有效的噪声。研究人员正在利用3D打印来构建具有微观特征的这些复杂的几何对象,这些物体可能构成诸如助听器之类的设备的基础。

“It’s challenging to miniaturize things that you can wear on a very small scale that still works at audio frequencies, so we’re seeking to develop new acoustic systems built with microscale features,” Jackson continued.

“他们将以音频频率在3D打印和声学系统设计方面的发展,以创建具有出色声学性能的材料,同时仍然轻巧且规模小。”

Dr. Andrew Feeney of the University of Glasgow is providing advanced materials expertise to the RESINator project.

“Advances in our materials science and fabrication capabilities are presenting new opportunities for acoustic devices,” he said. “We are now able to fabricate at smaller scales than ever before, but more importantly we can also detect the motion of these resonators with our advanced characterization facilities, which include non-contact instruments such as lasers.

“我很高兴能成为该项目的一部分,在那里我们在高级材料和设备的开发和表征方面的长期经验与杰克逊博士的研究结合在一起。”

Subscribe to the3D打印行业通讯for the latest news in additive manufacturing. You can also stay connected by following us on推特并喜欢我们Facebook。

Looking for a career in additive manufacturing? Visit3D打印作业在行业中选择一系列角色。

订阅我们YouTube channelfor the latest 3D printing video shorts, reviews and webinar replays.

特色图片显示在您的手掌中听到。一对艺术B-Titanium,通过Steven Hale听证会照片