Research

突破性涂料技术使3D印刷镜头反射

来自斯图加特大学已经开发了一种新的,可靠的方法,用于涂层3D印刷镜片,并带有抗反射涂层。

该方法被称为低温热原子层沉积(ALD),能够涂覆直径为600微米的多镜头系统,并有助于最大程度地减少由于晶状体界面之间的反射而损失的光。该团队认为,这项创新将对依赖多个微镜的高性能光学系统的3D打印有重大影响。

该研究的主要作者哈拉德·吉森(Harald Giessen)说:“我们的新方法将使使用多个镜头的任何3D打印复杂的光学系统受益。”“但是,它对于需要高质量光学元件的微型纤维内窥镜等应用特别有用,用于在不理想的照明条件下进行成像。”

带有和没有抗反射涂层的3D打印微片。图像通过斯图加特大学。
带有和没有抗反射涂层的3D打印微片。图像通过斯图加特大学。

消除反思的需求

在光学系统中,每次光线通过反射而穿过镜头 - 空气边框时,都会损失少量的光能。在多镜系统中,这种现象尤其明显,因为损失可能会非常迅速地复合,因此,如果我们要保留图像质量,则必须使用反射涂层。

Large and simple lenses, such as the ones used in cameras, are coated before they’re assembled into the final product. One of the most common methods is sputtering, which is a physical vapor deposition process. Unfortunately, we can’t use the same conventional techniques for tiny 3D printed lens systems because they typically feature more complex monolithic geometries with hard-to-reach cavities and overhangs.

“We have been working on 3D printed micro-optics for several years and always strive to improve and optimize our fabrication process,” adds Giessen. “It was a logical next step to add anti-reflective coatings to our optical systems to improve the imaging quality of complex lens systems.”

有一些传统的薄膜沉积过程实际上可用于将抗反射涂层应用于3D印刷的几何形状,但通常需要高温。在两光子聚合中使用的树脂通常稳定至200°C,因此该团队试图开发一种仅在150°C的ALD技术。

Low-temperature thermal atomic layer deposition

The low-temperature ALD technique works by exposing a 3D printed part to a gas containing the molecular precursors to an anti-reflective coating. Since the gas molecules are free to move around and diffuse, they can infiltrate the hollow cavities and overhangs of a complex structure, successfully forming a homogenous thin coat layer. By varying the precursor gas and depositing additional layers, the thickness, refractive properties, and reflective properties of the coating can be fine-tuned to create custom 3D printed lenses.

The team tested their ALD coating method with a set of miniature lens samples 3D printed on aNanoscribe Quantum Xsystem. The results indicated that the coatings were indeed successful, slashing broadband reflectivity of flat substrates in visible wavelengths to under 1%.

展望未来,研究人员认为,他们还可以调整该过程,以将其他薄膜(例如色过滤器)直接存放到3D打印的微镜头上。

该论文的第一作者西蒙·瑞斯托克(Simon Ristok)说:“我们首次将ALD应用于3D打印复杂微观访问的抗反射涂层。”“这种方法可用于制造新型极其薄的内窥镜设备,这些设备可能会促进新颖的诊断方法,甚至可以治疗疾病。它也可用于制造用于自动驾驶汽车或高质量微型光学元件的微型传感器系统,用于增强/虚拟现实设备,例如护目镜。”

The researchers using a microscope to acquire images of a 600 micron 3D printed lens system. Photo via University of Stuttgart.
The researchers using a microscope to acquire images of a 600 micron 3D printed lens system. Photo via University of Stuttgart.

更多细节的研究可以发现paper titled‘Atomic layer deposition of conformal anti-reflective coatings on complex 3D printed micro-optical systems’

当涉及3D打印微光学系统时,双光子聚合无疑是领先的技术。科学家弗莱堡大学have also utilized Nanoscribe 3D printers in the past, fabricating玻璃二氧化硅微观结构,分辨率仅为十分之一千分尺。使用“玻璃体”聚合物的树脂,该团队3D打印的物体具有6纳米的表面粗糙度,远小于许多其他玻璃零件中看到的40-200纳米。

Elsewhere,UpNano是一家位于维也纳的2pp 3D打印机的制造商,最近推出了两个新树脂,可与3D打印技术一起使用。命名Upblack和Upopto,光聚合物材料分别可以打印非传输黑色和半透明部分。这些材料可用于打印整个光学系统,包括套管和镜头等组件。

订阅3D打印行业newsletterfor the latest news in additive manufacturing. You can also stay connected by following us on推特, liking us onFacebook,然后调查3D打印行业YouTube频道

Looking for a career in additive manufacturing? Visit3D打印作业在行业中选择一系列角色。

Featured image shows the researchers using a microscope to acquire images of a 600 micron 3D printed lens system. Photo via University of Stuttgart.