58必威网

NASA’s new 3D printing alloy 1,000 times more durable than existing aerospace alloys

NASA,美国国家航空航天管理局(US National Aeronautics and Space Administration)开发了一种全新的金属3D印刷合金,专门为高性能航空航天系统使用。

Combining strength and durability, GRX-810 is an example of an oxide dispersion strengthened (ODS) alloy: a metal containing nanoscale oxide particles. The material can reportedly withstand temperatures of over 1090°C (2000°F), all while being more malleable than existing aerospace alloys.

NASAintends to use its latest innovation to 3D print high-temperature components for systems such as rocket engines, claiming it can ultimately enable improved fuel efficiency and lower maintenance costs. The agency has already used the alloy to 3D print a turbine engine combustor, a monolithic part designed to mix fuel and air.

NASA的转型工具和技术项目的副项目经理戴尔·霍普金斯(Dale Hopkins)表示:“纳米级氧化物颗粒传达了这种合金的令人难以置信的性能好处。”

A turbine engine combustor 3D printed at NASA Glenn using GRX-810. Photo via NASA.
A turbine engine combustor 3D printed at NASA Glenn using GRX-810. Photo via NASA.

GRX-810: a wonder alloy?

Owing to the harsh nature of outer space, NASA’s materials R&D efforts aim to enable enhanced mechanical properties in extreme environmental conditions. GRX-810 is the epitome of this, as it boasts ‘remarkable performance improvements’ over many of today’s leading alloys such as Inconel.

例如,在1090°C下,GRX-810具有裂缝耐药性的两倍,是延展性和延展性的三倍半,与“先进合金”相比,压力下的耐用性是压力下的1000倍以上。

“这一突破对于材料开发是革命性的。霍普金斯补充说:“新型更强大,更轻巧的材料起着关键作用,因为NASA旨在改变飞行的未来。”“以前,拉伸强度的增加通常会降低材料在破裂前伸展和弯曲的能力,这就是为什么我们的新合金非常出色的原因。”

A new alloy development process

GRX-810’s impressive blend of characteristics is due, in large part, to NASA’s new alloy development process. In this case, 3D printing technology was combined with thermodynamic modeling to achieve the material’s breakthrough performance.

ODS合金往往是困难和昂贵的产品开发lop, so NASA’s researchers initially had to use computational models to fine-tune GRX-810’s composition. The team leveraged thermodynamic modeling to determine exactly which metals to combine and in what amounts. Then, the researchers utilized laser-based 3D printing to uniformly disperse the nanoscale oxides throughout the alloy’s matrix, which is what provides the temperature resistance and strength properties.

According to Hopkins, the process of ODS development usually takes years and is largely based on trial-and-error. Using this new combination of computational modeling and 3D printing, the researchers managed to slash the development time down to just a matter of weeks. In the case of GRX-810, the thermodynamic modeling approach allowed the NASA team to discover the optimal alloy composition in just 30 simulations.

“应用这两个过程大大加快了我们材料开发的速度。现在,我们可以比以前更快地生产新材料。

NASAGlenn Research Center. Photo via NASA.
NASAGlenn Research Center. Photo via NASA.

更广泛的航空航天部门对金属3D打印技术并不陌生。就在本月,推进系统制造商Aerojet Rocketdyneused3D printing to optimize a key component of its Reaction Control System(RCS) quad thruster with the help ofnTopology’sdesign software. The firm’s new space engine part is now 67% lighter while also reducing the overall production cost of the thruster by 66% to enable faster and more sustainable lunar exploration.

Elsewhere, aerospace giantBoeingrecently unveiled a new high-throughput用于生产和测试小卫星的3D打印设施。该设施占地100万平方英尺,位于世界上最大的El Segundo卫星工厂内,并将由波音公司的子公司提供动力Millennium Space Systems。为了增加小型卫星的快速交付时间表,该设施将3D打印整个空间标志性的卫星总线,并有望在2022年底全面运行。

Subscribe to the3D打印行业通讯有关增材制造中的最新消息。您也可以通过关注我们来保持联系Twitter,喜欢我们Facebook,然后调查3D Printing Industry YouTube Channel

寻找添加剂制造业的职业?访问3D打印作业for a selection of roles in the industry.

Featured image shows a turbine engine combustor 3D printed at NASA Glenn using GRX-810. Photo via NASA.