Research

科学家使用3D打印技术开发喷气燃料驱动的热交换器

Researchers atRMIT University,澳大利亚,已经开发了一套下一代3D打印的冷却设备,这可能是解决Hypersonic Flight最大问题之一的关键。

所谓的3D印刷催化剂本质上是涂有合成矿物质的金属热交换器,称为沸石。它们的印刷成本效益和易于扩展,并使用喷气燃料作为冷却液来控制周围的温度。研究小组认为,进步有可能解决在高温应用(例如Hypersonic Flight)中过热的问题。

Dr Selvakannan Periasamy, the lead researcher of the study, said, “Our lab tests show the 3D printed catalysts we’ve developed have great promise for fuelling the future of hypersonic flight. Powerful and efficient, they offer an exciting potential solution for thermal management in aviation – and beyond. With further development, we hope this new generation of ultra-efficient 3D printed catalysts could be used to transform any industrial process where overheating is an ever-present challenge.”

3D打印催化剂的一系列实验设计。通过RMIT大学的照片。
3D打印催化剂的一系列实验设计。通过RMIT大学的照片。

温度控制问题

高音飞行定义为高于5马赫的速度(声音速度的五倍)或每小时6,500公里。高超音速飞机以最大的速度运行,理论上可以在三个小时内从欧洲到澳大利亚。不幸的是,只有一定数量的实验飞机才达到5马赫,因为有几个工程挑战使它变得非常困难。最大的障碍之一就是保持飞机凉爽,因为以这种速度行驶会产生极端的热量。

根据Roxanne Hubesch的合着者的说法,将燃料重新利用为冷却液是治疗过热问题的最有前途的方法之一。

她补充说:“燃料在为飞机供电的同时吸收热量的燃料是科学家的重点,但是这个想法依赖于需要高效催化剂的热量化学反应。”

由于高超音速飞机组件的大小和质量限制,催化剂需要尽可能小。因此,该团队使用SLM 3D打印来制造热交换器,并用沸石涂上沸石,将它们变成最终的可用催化剂。

作为NASA Hyper-X计划的一部分,X-43A Hypersonic研究车在2004年达到9.6马赫的速度。
作为NASA Hyper-X计划的一部分,X-43A Hypersonic研究车在2004年达到9.6马赫的速度。

小型化学反应堆

So how do the catalysts actually work? When the 3D printed structures are exposed to heat, some of the base metal material moves into the zeolite coating. This is what enables the endothermic (heat-absorbing) reaction in the fuel flowing through the printed structure, cooling the surroundings in the process. When testing the functionality of their printed catalysts in a lab with simulated temperatures and pressures, the researchers found them to have ‘unprecedented efficiency’.

“Our 3D printed catalysts are like miniature chemical reactors and what makes them so incredibly effective is that mix of metal and synthetic minerals,” Hubesch explains. “It’s an exciting new direction for catalysis, but we need more research to fully understand this process and identify the best combination of metal alloys for the greatest impact.”

就未来的工作而言,RMIT团队打算使用X射线同步器技术和其他高级分析方法来优化3D打印的催化剂。希望该技术的潜在应用可以扩展到用于室内空间的车辆和空气质量设备的空气污染控制。

Suresh Bhargava, Director of RMIT’s Centre for Advanced Materials and Industrial Chemistry, said, “This third generation of catalysis can be linked with 3D printing to create new complex designs that were previously not possible. Our new 3D printed catalysts represent a radical new approach that has real potential to revolutionise the future of catalysis around the world.”

Further details of the study can be found in the paper titled ‘3D打印的开放金属框架结构上的沸石:金属迁移到沸石促进了飞行车辆的吸热燃料的催化破裂’. It is co-authored by Suresh Bhargava, Roxanne Hubesch, Selvakannan Periasamy, et al.

主动冷却:3D打印应用程序

3D打印技术的更小众应用之一是主动冷却设备。就在上个月,一组美国研究人员使用3D打印来创建一部可配置的小说具有可修改的热和电磁特性的超材料。超材料的可重构性使其具有多功能性,并在微处理器,飞机和建筑物中进行了潜在的活性冷却应用。

Elsewhere, 3D printer manufacturer3D系统has previously partnered with the European Organization for Nuclear Research,欧洲核子研究中心,到3D打印大型强子对撞机的冷却组件(LHC). Specifically, the partners used the DMP Flex 350 PBF system to print a set of custom titanium cool-bars for use in particle detection experiments – components that would otherwise be impossible to manufacture.

订阅3D打印行业newsletterfor the latest news in additive manufacturing. You can also stay connected by following us on推特, liking us onFacebook,然后调查3D打印行业YouTube频道

Looking for a career in additive manufacturing? Visit3D打印作业在行业中选择一系列角色。

特色图像显示了3D打印催化剂的一系列实验设计。通过RMIT大学的照片。