研究

哈佛科学家开发了注入藻类的生物互联,以提高生物打印组织的生存能力

Scientists fromHarvard Medical School已经开发了一种新型的基于藻类的生物互联,该生物互联曾经将3D印刷到软组织结构中,可以增强细胞活力。

The team formed their bioink by combining a photosynthetic algae and human liver cells into a hydrogel matrix, then used it to 3D print hexagonal structures featuring lifelike liver ‘lobules.’ Due to the algae’s natural oxygen-emitting tendencies, the bioprinted human cells multiplied, showing increased functionality, and producing liver-specific proteins.

将来,研究人员认为,他们的新生物打印技术可以应用于从药物开发和个性化医学到健康的基于藻类的零食的领域。

“这项研究第一次真正的共生的例子tissue engineering combining plant cells and human cells in a physiologically meaningful way,” said the paper’s senior author Y. Shrike Zhang. “Our study provides a unique example of how we can harness the symbiotic strategy, very often seen in nature, to promote our ability to engineer functional human tissues.”

The research team's hexagonal bioprinted structures (pictured) proved capable of sustaining 92 percent of cells over seven days. Photo via the Matter journal.
The research team’s hexagonal bioprinted structures (pictured) proved capable of sustaining 92 percent of cells over the course of seven days. Photo via the Matter journal.

迫切需要3D生物打印组织

器官捐献者的短缺仍然是世界各地的一个重大问题,根据World Health Organization数字目前只有大约10%的移植需求。结果,人造替代方案的发展越来越紧迫,近年来,3D生物打印已使这一领域取得了重大进展。

Despite the varying approaches taken by researchers, the resulting cell-laden structures have often lacked the cell viability needed to make them useful in end-use scenarios. Scientists from华盛顿州立大学(WSU), for instance, have also created a天然增强的水凝胶, but it’s not yet ready for medical use.

细胞活力在很大程度上根植于其氧气水平,O的均匀分布2被证明可以促进细胞生长。然而,由于副产品损坏和不一致的释放曲线,先前尝试使用氧气分布生物材料来氧合细胞水凝胶的尝试已停滞。

为了克服这些限制,团队调整了含有藻类的水凝胶德累斯顿技术大学,包括更高的纤维素浓度。天然聚合物不仅为科学家的水凝胶提供了完整性,而且最终证明它能够将其氧化为3D打印。

科学家希望他们的3D打印和交联方法(如图)将成为具有增强细胞活力的组织支架的基础。图像通过物质日记。
The scientists hope that their 3D printing and crosslinking approach (pictured) will form a basis for a new generation of tissue scaffolds with enhanced cell viability. Image via the Matter journal.

哈佛团队的藻类水凝胶

该团队通过将羧甲基纤维素与明胶,PVA和藻酸盐相结合,并调整每种数量以优化墨水的粘度来创建水凝胶。一旦团队确定了理想的混合物,他们就将其用于3D打印一系列蜂窝结构,每个结构都包含七个六角形小叶。

在印刷过程中,研究人员创建了一系列六个,十和二十层的组织,形成了3D管状网格样图案。然后,科学家将不同水平的Reinhardtii光合藻类和10%的胎牛血清混合在一起,并观察到令人鼓舞的结果。

生物打印的藻类以光合作用方式释放了氧气,从而增强了肝细胞的生存力和功能,而不会影响生物学的可打印性。此外,在最后一步中,团队添加了纤维素酶以溶解其生物焦,并发现它留下了空心的微通道。

用人血管细胞填充这些腔室,使科学家能够创建肝样组织,表现出良好的细胞生长并产生天然蛋白质。尽管不包含藻类输注的细胞结构仅表现出70%的生存能力,但确实显示出多达92%的生存能力。

张总结说:“这种逃犯的生物界的发展尚未报告在单个组织构建体内的初始氧合和随后的血管形成。”“这是迈出可行和功能性组织的成功工程的关键步骤。”

采用藻类的健康益处

Algae is not only healthy for the human body, but it also has a role to play in reducing greenhouse gas emissions, and its green credentials have increasingly made it the subject of 3D printing-related research.

Scientists from the Dutch瓦格宁根大学和西班牙语瓦伦西亚大学,已经部署了一个海洋藻类到3D打印一系列healthy cereal snacks. The team has theorized that they could customize the shape, texture and color of algae-based foods to make them more appealing.

在其他地方,来自University of Cambridge加州大学圣地亚哥分校has 3D bioprinted珊瑚模仿结构能够生长微观藻类的人。通过微调藻类的种植,科学家旨在开发一种减少发展中国家温室气体排放的方法。

The researchers’ findings are detailed in their paper titled “Symbiotic Photosynthetic Oxygenation within 3D-Bioprinted Vascularized Tissues.” The study was co-authored by Sushila Maharjan, Jacqueline Alva, Cassandra Cámara, Andrés G. Rubio, David Hernández, Clément Delavaux, Erandy Correa, Mariana D. Romo, Diana Bonilla, Mille Luis Santiago, Wanlu Li, Feng Cheng, Guoliang Ying and Yu Shrike Zhang.

要了解最新的3D印刷新闻,请不要忘记订阅3D打印行业newsletter或跟随我们推特或喜欢我们的页面Facebook.

Are you looking for a job in the additive manufacturing industry? Visit3D Printing Jobsfor a selection of roles in the industry.

特色图像显示了哈佛团队融合了藻类融合的结构的六层配置。通过《物质日报》的照片。